Sunday, 11 November 2012

ENGINEERING MATHEMATICS


Applied Mathematics-II
UNIT-I
1. (a) If x + = 2 cos ө and y + 1= 2cos ө
x                                x
Show that one of the value of
xmyn +        1        is 2cos(m ө + nф) 
                         xm + yn 
(b) If (ө iф) ea show that
ө = (n + 1/2)/2                    and
          ф=log tan (  + a)
2               4     2
(c) Sum the series by C+ is method:
xsin ө –  x2 sin2 ө +1x3 sin 3ө ………∞
2                     3
 UNIT- II
2. (a) Solve the equation:
d2y – 2dy + y= xex sin x.
dx2      dx
(b) Solve by the method of variation of parameter:
d2y + y= x sin x
dx2
(c) Solve the equation
x2d2y – 3xdy + 4y= (1+x)2
dx2        dx
 UNIT- III
3. (a) Change the order of the integration in
2-x
lʃ0 ʃ xy dx dy
and hence evaluate same.
(b) Find the volume bounded by the cylinder x2 + y2 = 4 and the planes
y + z = 4 and z = 0
(c) Solve  ʃ ʃxy(x2 + y2)n/2 dxxy over the positive quadrant of
x2 + y2 = 4 sup posin g n + 3> 0
 UNIT- IV
4. (a) find the work done in moving a particle in the force field:
F= 3x3I + (2xz – y)+ zk along:
(i) the straight line form (0,0,0) to (2,1,3)
(ii) the curve defined by x2 =4y, 3x2 =8z from x = 0 x = 2
(b) Evaluate divergence & curl of
F = 3x2 I + 5xy2 j +xyz3 K
At the point (1, 2, 3)
(c) Use divergence theorem to evaluate ʃF ds where
F = 4xl – 2y2 j + z2 K and S is the surface bounding the region
x2 + y2 = 4, z = 0, z = 3
UNIT-V
5. (a) Solve the equation by Ferrari’s method:
x4  - 12x2 + 41x2 – 18x- 72 = 0
(b) Solve the equation by Cardin’s method:
x3 – 15x – 126 = 0
(c) Solve x3 – 4x2 – 20x + 48 = 0 given that the roots a and β are connected by the relation a + 2β = 0Applied Mathematics-II
UNIT-I
1. (a) If x + = 2 cos ө and y + 1= 2cos ө
x                                x
Show that one of the value of
xmyn +        1        is 2cos(m ө + nф) 
                         xm + yn 
(b) If (ө iф) ea show that
ө = (n + 1/2)/2                    and
          ф=log tan (  + a)
2               4     2
(c) Sum the series by C+ is method:
xsin ө –  x2 sin2 ө +1x3 sin 3ө ………∞
2                     3
 UNIT- II
2. (a) Solve the equation:
d2y – 2dy + y= xex sin x.
dx2      dx
(b) Solve by the method of variation of parameter:
d2y + y= x sin x
dx2
(c) Solve the equation
x2d2y – 3xdy + 4y= (1+x)2
dx2        dx
 UNIT- III
3. (a) Change the order of the integration in
2-x
lʃ0 ʃ xy dx dy
and hence evaluate same.
(b) Find the volume bounded by the cylinder x2 + y2 = 4 and the planes
y + z = 4 and z = 0
(c) Solve  ʃ ʃxy(x2 + y2)n/2 dxxy over the positive quadrant of
x2 + y2 = 4 sup posin g n + 3> 0
 UNIT- IV
4. (a) find the work done in moving a particle in the force field:
F= 3x3I + (2xz – y)+ zk along:
(i) the straight line form (0,0,0) to (2,1,3)
(ii) the curve defined by x2 =4y, 3x2 =8z from x = 0 x = 2
(b) Evaluate divergence & curl of
F = 3x2 I + 5xy2 j +xyz3 K
At the point (1, 2, 3)
(c) Use divergence theorem to evaluate ʃF ds where
F = 4xl – 2y2 j + z2 K and S is the surface bounding the region
x2 + y2 = 4, z = 0, z = 3
UNIT-V
5. (a) Solve the equation by Ferrari’s method:
x4  - 12x2 + 41x2 – 18x- 72 = 0
(b) Solve the equation by Cardin’s method:
x3 – 15x – 126 = 0
(c) Solve x3 – 4x2 – 20x + 48 = 0 given that the roots a and β are connected by the relation a + 2β = 0

No comments:

Post a Comment